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Summary

Selected gencralizations of classical canonical analysis to canonical analysis of multivariate
autoregressive time series are presented. It is shown how to construct the autocovariance matrices and
the cross-covariance matrices under the assumption that the parameters of the autoregressive processes
are known. In order to be able to construct the canonical series based on the sample the estimation
method of the parameters and the rank of the multivariate autoregressive model is given. The theoretical
considerations are illustrated by a numerical example. :

1. Introduction

The multiple regression is a useful tool in investigation of the dependence between one
dependent variable and a set of p independent variables. Very often, however, we are
interested in more complicated form of dependence, namely dependence between a set of g
dependent variables and a set of p independent variables. Hotelling (1936) introduced the
idea of the canonical variables and canonical correlations and suggested using them in the
investigation of the dependence of two vectors of variables. The ideas of Hotelling have been
generalized in many papers and found many applications (see e.g. Krzysko, 1982; Giltins
1985).

This paper contains selected generalizations of classical canonical analysis to canonical
analysis of multivariate autoregressive time series. The dependences between linear combi-
nations of the processes X(r) and Y() are investigated. As the measurc of the association
between the linear combinations of the processes X(r) and Y(r) we can use the cross-covariance
cocfficient that depends on autocovariances and cross covariances matrices of the processes.
It is shown how to construct the autocovariance matrices and the matrix of cross covariances
under the assumption that the parameters of the autoregressive processes are known. In order
to make possible the construction of the sample canonical series of the autoregressive
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processes the methods of estimation of the parameters and the order of the model are showed.
The theoretical considerations are illustrated by a numerical example.

2. Canonical series and canonical correlations

Let Z()=X" ), Y () = XDy X,(0), Y\ (D). Y (D), 1=0,£1,%2,..., be a (p+q)-
dimensional jointly strictly stationary real valued vector process with zero mean vector and
the positive definite autocovariance matrix

Cyx(@), Cy(v)
where Cyy (t) = Cxy(—T). Suppose now that X(r) and Y (/) arc autoregressive processes.

Let {X(I), =0, %1, i2,...} be a p-dimensional stochastic process described by an autore-
gressive equation of finite order r;

Col) = EZOZ (1+0)] = [Cxﬁ'% Cyy(®) } )

7y
Y, AGu) X(t-1) =y (1), (1)
u=0
where
(i) X(r) are observable random vectors,

(i) A(w) are matrices of parameters such that the absolute value of roots of the charac-
teristic equation

24
1> Aw@r ™1 =0
u=0

are less than 1,

(iii) W, () are unobservable independently normally distributed random vectors with zcro
mean and positive definite covariance matrix X | .

Suppose that the parameters A(1), A(2) ,..., A(r), Z; are known.

We shall express the covariance matrix Cx(t) by the parameters of the autoregressive
equation.

The process X(¢) as a strictly stationary process can be expressed in the unique infinite
moving average representation

X=X U)W,  U0)=I,.

u=0

It is clear that this process can also be expressed as a first order vecior autoregressive
process

L =ATE-1)+&(),
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where
§) = (X(O) s X (t=r1#1))’
g(M=0W0,0...,0)
and
A< AW ~AQ) o -A)
lp(rl—l) S 0 s
Note that

XO=Wn, wO=Wig() and &()=Wy),
where W/ =(1,,0....,0) is px pry matrix. Also, {(r) has the representation

L=, A", (-u)

u=0

so that

X()=Y, W] A“ Wy, (--u).
=0

Thus, from the unique moving average representation of X (1) we have
Uw)=WiA“W,, u=0,1,...
Hence

Cx(1) = E[X(OX’ (#+1)] = 3, Uy) , Uj(u+1) .

u=0

The spectral decomposition of a matrix A has the form

A=PAP; ,

where
Ay =diag Ay, Mgse Ay

Hence

A"=P AP
and

Cx(1) =W, P, Hy() P W, ,

where

Hy = (hx ) =P7' W, X, Wi (PY) , -
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Hy(1) = ), Af HyA " .
u=0
The eigenvalues of the matrix A are equal to the roots of the characteristic equation
n

1> A@A™ =0

u=0
which absolute values are less than 1. Hence

Y AHy A <

u=0

and the elements of the matrix Hx(t) are

h?(,nm(‘t) == hx,mn Tn (l iy A'lm A'ln)_l .

Let {Y(t), 1=0,%1,%2,... } be a g-dimensional stochastic process described by an autore-
gressive equation of finite order r,

n

Y B) Y(-u) = wy1) . ()

u=0
By following the same arguments as in the case of a process X(r) we have

Cy(1)=W; P, Hy() B, W, ,

where

Hy = (hy,,) =P3' W, X, Wi P’

HY(®) = (W (©)) ,
h%,mn(’r) e hY,mn x’;n (l_)’Zm >"ln)_l >
Wi=(1,,0....,0)

and A,; are the eigenvalues of the matrix

; _[—B(l), -B(2), ... -B(rp) ] _

Loy 0 0

29, for r=s
0, for res

E {wi(") ¥,(5)} ={
Then the cross-covariance matrix between X(7) and Y(¢) has the following form

Cxy(1) = E[X(1Y'(1+1)] = W] P{H}y(1) W, ,
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where
Hyy = (hxy ) = P]'W, Z,,W; (P7'Y,

H(&Y(T) = (hXY,m.n(T)) »
1
h?ﬂ’,m,a(T) ¥ hXY.m,n ;‘Q‘tn 155, T
Consider now an arbitrary linear combination, V(1) = L’X(r), of thc components of X(/)
and an arbitrary linear function, V(1) = M’Y(/), of the components of Y(7).
We first ask for the lincar functions that have maximum cross correlation Puv(0).
By definition,

Cy(0)
Puv(0) = T 0)C,0)
where 2
Cy(0)=L'CxO)L,
Cy(0) =M'Cy(O)M ,
Cyv(0) = L'Cxy(0)M .
Hence

By L’Cxy(O)M
Puv(0) = 7 OL-MC, M
Since the cross-correlation of a multiple of U(f) and a multiple of V(¢) is the same as the

cross-correlation of U(r) and V(r), we can make an arbitrary normalization of L and M. We
therefore require L and M to be such that U(#) and V() have unit variance, that is

Cu(0)=L"Cx(O)L=1, 3)
Ci0)=M'Cy(O)M=1. ©))

Then the cross-correlation between U(f) and V(r) is
Puv(0) = L'Cxy(O)M . (5)
Thus the algebraic problem is to find L and M which maximize (5) subject to (3) and

).
et

F(LM) = L'Cxy(OM - M2(L'Cx(O)L. — 1) - p2(M'Cy ()M — 1) , ©)

where 2 and p are Lagrange multipliers. We differentiate F with respect to the elements of
L and M. The vectors of derivatives set equal to zero are

g—f = Cxy(OOM - ACx(O)L =0, )
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oM
Multiplication of (7) on the left by L’ and (8) on the left by M’ gives
L'Cyy(O)M - AL’Cx(0)L =0,
M’Cyxy(O)L — uM’Cy(0)M =0 .

Since L’ Cx(0)L.=1 and M’Cy(0)M =1, this shows that A=p =L’ Cyy(0) M =p.
Thus (7) and (8) can be written as

—PCx(O)L + Cxy(OM =0,
ny(O)L = pCY(O)M =0 ’

=C'xy(O)L - pCy(OM =0. @®

since
C'xy(0) = Cyx(0).
In one matrix equation this is

-pCx(0) , Cxy(0)| [L s
Cyx(0) . —pCy(0)| (M i

In order that there be a nontrivial solution, the matrix on the left must be singular, that is,

—pCx(0) , Cyxy(0)
Cyx(©0) , -pCy(0)

We can express this condition in one of two alternative ways:

| Cxy(O)CH O)Cyx(0) - p* Cx(0) | =0 o)

=0.

or

| Cyx(0)CX (0)Cxy(0) — p* Cy(0) | =0 . (10)

Equation (9) has p roots, while equation (10) has ¢. The nonzero roots of equations (9) and
(10) are equal, so that it is possible to represent them with the same symbols. The number
of nonzero roots of these equations is equal to the rank of the matrix Cyy(0).

Let pf 2 p% = SRR p:“, be the roots and L), Ly,...,L,, the corresponding vectors of the

determinantal equation (9) and let p? > p% e pﬁ be the roots and M;.M,,....M, the
corresponding vectors of the determinantal equation (10). Let L= (Ly,Ly.....L,) and
M=MM,,..M,).

The non-zero roots py,p,,....p, Where s =rank Cyy(0), are called the canonical correla-
tions.

The linear functions U(r) = L’X(r) are called the canonical series of the process X(f) and
the linear functions V(r) = M"Y (r) are called the canonical series of the process Y(7).
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3. Properties of canonical series

p1
P2

(i) The autocovariance matrix of the canonical series has the following form

U@ _ |, P
vdr[vm] = [lf’ 1,,]' (11)

From (11) it can be noted that the variances of all canonical series U (r) and V(1) are equal
to unity. Also

Pi» if i=j'
corr (U1, Vi) = A
W) Vo) {0 T
and
corr (Ui(1), Ut)=0, corr (Vi(1), V1) =0,
ifi#j.
In other words, the first canonical series of the process X(f) is only correlated with the
first canonical series of the process Y(f), the second with the second, and so on. These
correlations are respectively equal py,....p;.

(i) The following relationships are true:
corr (X(1), V(1)) = p; corr (X(1),.U\(1),
forsi="12acpl = 120 5

corr (Yi(1), Uj(1) = p; corr (Y(n),V(1)),
fordz=1828q 51" =127 5T,
Also

P -
2, cor(X; (0, U; ) =1,
j=1



q
D, cor(Y,(1), V; () =1,
=1

fori=12....p, k=12,.4
or

P
Var X,(1) = Y, Cov*(X 1), Uf1)),
j=1

q
Var Y,(1) = Y, Covi(Y,(1), Vi(1)),

j=1
for i=12,.p, k=12,..4.

The above relationships form the basis for the interpretation of the canonical series. It is
obvious from these relationships that individual canonical series account, in varying degrees,
for the variance of the original process. A measure of this explanation is the cocfficient of
determination between the canonical series and the original process.

(iii) The canonical correlations and canonical series are invariant with respect to nonsin-
gular linear transformations.

4. Parameters estimation and order determination of the
multivariate autoregressive processes

In practice the parameters and orders of the multivariate autoregressive processes arc not
known. We first assume that the order r, of (1) is known and that the parameters

A(1),...,A(r).X, arc not known. We will now consider the estimation of the parameters
A(1),...,A(r;) on the basis of N independent realizations X, (1),....X,(T), n=1,...N of the
process {X(1)}. If we introduce the following notation

A = (A, Ar)),  L0-1) =X, 0-1),... X, ()

PxP’I pr,xl
X = (X,(ry+1),0.. X (1), Xp(ry +1),... X 0(D)
PN (T-r))
€ = (€i0)snsGi(T=1),... L), EMT-1))
pXN (T-r,)
Wi = (Wi (D W (D) D M(D)
PN(Tr,)

then model (1) for t = r\+1,....,T, n=1,..,N may be rewritten as

X=—ACl+vy,. (12)
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For N(T-ry) 2 pry , the ordinary least squares estimator of A is (Krzysko and Smoczysiski
(1984)):

N-weT
A=-xreey? =—l2 2 X0 c:,(r—l)}n", (13)
n=11=r+l

where

N T
Z Z =D, -1) .

From (12) we have

Q, =X+A4 C
and
%, = [N (T=r)I™ §¥ = INT=r)I ' (XX’ + X CAY) . (14)
Model (2) for r = ry+1,....,T, n=1,..,N may be rewritten as
=-Bl+w,. (15)
For N(I-ry) 2 qr, the ordinary least squares estimator of B is
N T '
B=—y ey =—[2 2 Y,0) c;(r—l)}na‘ , (16)
n=1 '=’z+]
where

i

N
=3, 3, L.0-)La-1).
n= 1

From (15) we have

A
‘%2 =X+A(
and
i 1A A = ’ 7
L=INT-r)I” v ¥=INT-r)]” YY' +YUB) . an
Suppose now that r; < r,. Then the estimator of the matrix Z;, has the following form
£ = NG WiV, (18)

where the matrix sz contains the N(7-r;) first columns of the matrix \Afz

In practice, not only are the parameters of the models (1) and (2) unknown but so are
the orders of the models. Therefore, we will now consider the estimation of the true order
ry  of the autoregressive equation (1) on the basis of N independent realizations

X, (1),...X,(T), n = 1,..,N of the process {X(7)}. Quinn (1980) proposcd an expression
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@(k) for the determination of the order of multivariate autoregressive models, of the following
form:

A
ok)=In| P| + 21 % InInT , (19)
1

where £ is given by (14) in the model of the order .

The estimator ?1 of the true order of the modei (1) can be expressed as

n= arg{ mm (p(L) }
ke L.
where R, is an arbitrarily chosen number larger that r,.

Quinn (1970) shows that the estimator ?, is a strongly consistent estimator of the true
order ry.

As the true order of the model (1) is not known, we can assume that r, € {l,...,Rl} .
For each assumed order we can obtain the estimators of the remaining parameters of the
model (1) by (13) and (14). In this manner we can compute the values of the function (19)
for each ke {l,...,R,}, and we can find the estimator of the order of the model (1) by
minimizing the function @(k).

In the same manner we can find the estimator of the truc order of the model (2).

5. Example

Consider the second order two-dimensional autoregressive process of the form

X(r)+[‘3‘:§’: ’?_'0] X (- 1)+[‘0 %, 002] X(-2) = v, 1),

where

v~ NO.XZ,),

10, 05
zl‘{o.s, 1.25]

and the first order three-dimensional autoregressive process of the form

-0.3, -0.8, -0.5
Y()+| 06, =09, 0.0[Y(@-1)=w,(),
-0.6, 02, -0.7

where

v, (N~ NO.X,),

10, 05, -04
T=| 05, 125 -0.1 |,
-04, -0.1, 1.17

X,, for r=s,
ELw/() vz(sn:{ A a eyl
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5 .. <125, 1125, -14
1271 1.125, 18125, 07|

We shall express the covariance matrices Cx(0), Cy(0) and cross-covariance matrix
Cxy(0) by the parameters of the autoregressive processes X(7) and Y(7).
The matrix A associated with the process X(r) has the form
1.0, 03, 0.02, o.o]
7 -3.3, -1.0, 0.0, 0.02
~| 1.0, 00, 00, 00 |~
0.0, 1.0, 0.0, 0.0
The eigenvalues of this matrix are A;; =-0.2, A;;=02, A;3=0.1, A;,,=-0.1 and the
matrix whose columns are the associated eigenvectors has the form
025 -055 299 -6.18
_[-0.92 165 1096 18.54

~|-1.26, -2.75 -29.89 61.79
462 8.25 109.60-185.38

P,

The matrix W, has the form

1
0
W1= 0

CO=O

0
The matrix B associated with the process Y(r) has the form

03 0.8 05
B=(-06 09 00
0.6 -0.2 0.7

The eigenvalues of this matrix are
A =0.6+03i, Ap= 0.6-0.3i, A3 =07
and the matrix whose columns are the associated eigenvectors has }hc form

0:55 0:50880:5-0'5idy =1
P,= i 7 -3
=f o b
The matrix W, has the form

Lpstlonef)
WZ= 0 1 O
0 0. 71

The covariance matrices and the cross-covariance matrix of the processes X(7) and Y () have
the form

242 418
&0 '[—4.18 16.73] .



4.17 133 0.88
Cy(0)=(133 6.89 -6.29],
0.88 -6.29 10.05

_[ 227 165 -1.89
CXY(O)‘[—z.z 0.06 0.93]'

The canonical correlations are
p;1=09702, p,=0.2382
and the canonical series are
U, (1) =0.7998X (1) + 0.1151X,(r),
Uy(1) = 0.2954X, (1) + 0.303 1X,(r),
V(1) = 0.4985Y,(1) — 0.1613Y,(1) — 0.2886Y5(7),
V(1) = —0.2668Y, (1) + 0.6427Y,(1) + 0.3102Y ().

The coefficients of determination are
corr(Xi(1), Vi®)) - 100 | U1(0) Ua(1)
X1 87.39 12.61
Xa(1) 12.00 88.00

cor (Y1), Vi) - 100 | Vi) Vo) Vi)

610) 62.18 0.01 3781

Ya() 27.13  65.36 7.51

Y1) 20.85 1339 65.76
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